Abstract

The present study was designed to investigate the anti-apoptosis effect of Ma xing shi gan decoction (MXD) on PM2.5-induced lung injury via protein kinase B (Akt)/mTOR/p70S6K pathway. A UPLC-MS/MS system was introduced for component analysis of MXD. Rats were instilled with PM2.5 solution suspension intratracheally to induce acute lung injury. The rats were then orally administered with MXD (16, 8, and 4 g/kg) once a day for 7 consecutive days. The therapeutic effects of MXD were evaluated by Hematoxylin and Eosin (HE) staining. The apoptotic cell death was analyzed by terminal-deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay. The alterations in cytochrome c (Cytc) and cleaved-caspase-3 (C-caspase-3) were measured by immunohistochemistry (IHC). The expressions of Bax, B-cell lymphoma 2 (Bcl-2), p-Akt, p-mTOR and p-p70S6K were detected by Western blot. In vitro, PM2.5 exposure model was introduced in A549 cell, followed by incubation with MXD-medicated serum. Hoechst staining was used to determine apoptotic rate. The levels of Bax, Bcl-2, p-Akt, p-mTOR and p-p70S6K were detected by Western blot. Our results in vivo indicated that treatment with MXD decreased histopathological changes score, TUNEL-positive cells rate, expressions of Cytc and C-caspase-3. The in vitro results revealed that incubation with MXD-mediated serum decreased apoptotic rate. Both results in vivo and in vitro demonstrated that MXD inhibited pro-apoptotic protein Bax and promoted anti-apoptotic protein Bcl-2 expression. Likewise, MXD activated Akt/mTOR/p70S6K signal pathway, which was also confirmed by Western immunoblotting. In conclusion, MXD attenuates lung injury and the underlying mechanisms may relate to regulating the apoptosis via Akt/mTOR/p70S6K signaling pathway activation.

Highlights

  • Fine particulate matter (PM2.5) refers to particulate matter with an aerodynamic equivalent diameter of 2.5 microns or less in air

  • A positive electrospray ionization mode LC-MS profile was developed for Ma xing shi gan decoction (MXD) sample and mixed standard solution (Figure 1B,C), and the result confirmed the presence of ephedrine hydrochloride, pseudoephedrine hydrochloride, liquiritin and glycyrrhizic acid in MXD

  • A negative electrospray ionization mode LC-MS profile was developed for MXD sample and mixed standard solution (Figure 1D,E), and the result confirmed the presence of amygdalin, liquiritin and glycyrrhizic acid in MXD

Read more

Summary

Introduction

Fine particulate matter (PM2.5) refers to particulate matter with an aerodynamic equivalent diameter of 2.5 microns or less in air. It can be suspended in the air for a long time, and the higher its concentration in the air, the more serious the air pollution will be [1]. Long-term exposure to PM2.5 poses a great threat to human health, which has been confirmed by in vivo experiments. He et al pointed out PM2.5 exposure causes oxidative

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.