Abstract

AntiCancer Peptides (ACPs) have emerged as promising therapeutic agents for cancer treatment. The time-consuming and costly nature of wet-lab discriminatory methods has spurred the development of various machine learning and deep learning-based ACP classification methods. Nonetheless, current methods encountered challenges in efficiently integrating features from various peptide modalities, thereby limiting a more comprehensive understanding of ACPs and further restricting the improvement of prediction model performance. In this study, we introduce a novel ACP prediction method, MA-PEP, which leverages multiple attention mechanisms for feature enhancement and fusion to improve ACP prediction. By integrating the enhanced molecular-level chemical features and sequence information of peptides, MA-PEP demonstrates superior prediction performance across several benchmark datasets, highlighting its efficacy in ACP prediction. Moreover, the visual analysis and case studies further demonstrate MA-PEP's reliable feature extraction capability and its promise in the realm of ACP exploration. The code and datasets for MA-PEP are available at https://github.com/liangxiaodata/MA-PEP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.