Abstract

As one of the most important post-transcriptional modifications, the N7-methylguanosine (m7G) plays a key role in many RNA processing events. The accurate identification of m7G is crucial for elucidating its biological significance and future application in the medical field. In this study, a machine learning-based model was developed for the prediction of internal m7G sites, and five different feature extraction methods (Pseudo dinucleotide composition, Pseudo k-tuple composition, K monomeric units, Ksnpf frequency, and Nucleotide chemical property) were used in the feature extraction. The Random Forest algorithm was used to find the optimized feature subset and the SVM-based predictor achieved the best performance by taking the top 240 features for model training. With different performance assessment methods, 10-fold cross validation, Jackknife test, and independent test, m7GPredictor achieved competitive performance compared with the state-of-the-art predictor iRNA-m7G. The predictor developed in this study can offer useful information for elucidating the mechanism of internal m7G sites and related experimental validations. The dataset used in this study and the source code of m7Gpredictor is all available at https://github.com/NWAFU-LiuLab/m7Gpredictor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.