Abstract

Liver fibrosis is a key pathological process shared by the progression of various chronic liver diseases. Treatment of liver fibrosis can effectively block the occurrence and development of hepatic cirrhosis or even carcinoma. Currently, there is no effective drug delivery vehicle for curing liver fibrosis. In this study, we designed matrine (MT)-loaded mannose 6-phosphate (M6P) modified human serum albumin (HSA) conjugated solid lipid nanoparticles (SLN), named M6P-HSA-MT-SLN for treatment of hepatic fibrosis. We demonstrated that M6P-HSA-MT-SLN exhibited controlled and sustained release properties and good stability over 7 days. The drug release experiments showed that M6P-HSA-MT-SLN exhibited slow and controlled drug release characteristics. In addition, M6P-HSA-MT-SLN showed a significant targeted ability to fibrotic liver. Importantly, in vivo studies indicated that M6P-HSA-MT-SLN could significantly improve histopathological morphology and inhibit the fibrotic phenotype. In addition, in vivo experiments demonstrate that M6P-HSA-MT-SLN could reduce the expression of fibrosis markers and alleviate the damage of liver structure. Hence, the M6P-HSA-MT-SLN provide a promising strategy to deliver therapeutic agents to fibrotic liver to prevent liver fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call