Abstract

BackgroundCircular RNAs (circRNAs) are believed to regulate the progression of various cancers including colorectal cancer (CRC). However, the role and mechanism of circ_0124554 in regulating the sensitivity of CRC to radiation remain unknown. MethodsThe RNA levels of circ_0124554, LIM and SH3 protein 1 (LASP1), and methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit (METTL3) were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blot. Cell proliferation, apoptosis, migration, and invasion were investigated by 5-Ethynyl-2′-deoxyuridine (EdU) assay, flow cytometry analysis, and transwell assay, respectively. The sensitivity of CRC cells to radiation was analyzed by cell colony formation assay. Xenograft mouse model assay was conducted to disclose the role of circ_0001023 in the sensitivity of tumors to radiation in vivo. The binding relationships among circ_0124554, miR-1184 and LASP1 were confirmed by a dual-luciferase reporter assay. m6A RNA immunoprecipitation assay was performed to identify the association of METTL3 with circ_0124554. ResultsCirc_0124554 expression was upregulated in CRC tissues and cells in comparison with normal colorectal tissues and cells. Circ_0124554 knockdown inhibited proliferation, migration and invasion and promoted apoptosis and radiosensitivity of CRC cells. Moreover, circ_0124554 depletion inhibited tumor formation and improved radiosensitivity in vivo. MiR-1184 was identified as a target miRNA of circ_0124554 and targeted LASP1. Additionally, LASP1 overexpression rescued circ_0124554 knockdown-mediated effects in CRC cells. METTL3 mediated m6A methylation of circ_0124554. Further, circ_0124554 overexpression attenuated METTL3 depletion-induced effects in CRC cells. Conclusionm6A-modified circ_0124554 promoted CRC progression and radioresistance by inducing LASP1 expression through interaction with miR-1184.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.