Abstract

N6-Methyladenosine (m6A) is a ubiquitous RNA modification with vital roles in various cancers, but little is known about its role in papillary thyroid carcinoma (PTC), a common endocrine malignancy. In this study, an m6A RNA methylation regulator-based biomarker signature was developed for the effective prediction of prognosis in patients with PTC. The gene expression profiles of m6A RNA methylation regulators and the corresponding clinical information was downloaded from The Cancer Genome Atlas (TCGA). Differentially expressed m6A RNA methylation regulators between tumor and normal control samples, and correlation expression levels, clinical parameters, and outcomes were evaluated. And a prognostic signature was built using a PTC cohort from TCGA. The expression level of HNRNPC was remarkably upregulated in tumor samples, while WTAP, RBM15, YTHDC2, YTHDC1, FTO, METTL14, METTL3, ALKBH5, KIAA1429, YTHDF1, and ZC3H13 were significantly downregulated in the cancer specimens compared with those in control samples. A three-gene prognostic signature comprising RBM15, KIAA1429, and FTO could predict overall survival in patients with PTC. In addition, the prognostic signature-based risk score was identified as an independent prognostic indicator for PTC. We established a robust m6A RNA methylation regulator-based molecular signature for predicting prognosis in patients with PTC with high accuracy; this signature might provide important guidance for therapeutic strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.