Abstract

N(6)-methyladenosine (m(6)A) has been recently identified as a conserved epitranscriptomic modification of eukaryotic mRNAs, but its features, regulatory mechanisms, and functions in cell reprogramming are largely unknown. Here, we report m(6)A modification profiles in the mRNA transcriptomes of four cell types with different degrees of pluripotency. Comparative analysis reveals several features of m(6)A, especially gene- and cell-type-specific m(6)A mRNA modifications. We also show that microRNAs (miRNAs) regulate m(6)A modification via a sequence pairing mechanism. Manipulation of miRNA expression or sequences alters m(6)A modification levels through modulating the binding of METTL3 methyltransferase to mRNAs containing miRNA targeting sites. Increased m(6)A abundance promotes the reprogramming of mouse embryonic fibroblasts (MEFs) to pluripotent stem cells; conversely, reduced m(6)A levels impede reprogramming. Our results therefore uncover a role for miRNAs in regulating m(6)A formation of mRNAs and provide a foundation for future functional studies of m(6)A modification in cell reprogramming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.