Abstract

BackgroundSmall cell lung cancer (SCLC) is lethal and possesses limited therapeutic options. Platinum-based chemotherapy—with or without immune checkpoint inhibitors (anti-PDs)—is the current first-line therapy for SCLCs; however, its associated outcomes are heterogeneous. N6-methyladenosine (m6A) is a novel and decisive factor in tumour progression, chemotherapy resistance, and immunotherapy response. However, m6A modification in SCLC remains poorly understood.MethodsWe systematically explored the molecular features and clinical significance of m6A regulators in SCLC. We then constructed an m6A regulator-based prognostic signature (m6A score) based on our examination of 256 cases with limited-stage SCLC (LS-SCLC) from three different cohorts—including an independent cohort that contained 150 cases with qPCR data. We additionally evaluated the relationships between the m6A score and adjuvant chemotherapy (ACT) benefits and the patients’ responses to anti-PD-1 treatment. Immunohistochemical (IHC) staining and the HALO digital pathological platform were used to calculate CD8+ T cell density.ResultsWe observed abnormal somatic mutations and expressions of m6A regulators. Using the LASSO Cox model, a five-regulator-based (G3BP1, METTL5, ALKBH5, IGF2BP3, and RBM15B) m6A score was generated from the significant regulators to classify patients into high- and low-score groups. In the training cohort, patients with high scores had shorter overall survival (HR, 5.19; 2.75–9.77; P < 0.001). The prognostic accuracy of the m6A score was well validated in two independent cohorts (HR 4.6, P = 0.006 and HR 3.07, P < 0.001). Time-dependent ROC and C-index analyses found the m6A score to possess superior predictive power than other clinicopathological parameters. A multicentre multivariate analysis revealed the m6A score to be an independent prognostic indicator. Additionally, patients with low scores received a greater survival benefit from ACT, exhibited more CD8+ T cell infiltration, and were more responsive to cancer immunotherapy.ConclusionsOur results, for the first time, affirm the significance of m6A regulators in LS-SCLC. Our multicentre analysis found that the m6A score was a reliable prognostic tool for guiding chemotherapy and immunotherapy selections for patients with SCLC.

Highlights

  • Small cell lung cancer (SCLC) is lethal and possesses limited therapeutic options

  • Using the least shrinkage and selection operator (LASSO) Cox model, a five-regulator-based (G3BP1, METTL5, ALKBH5, IGF2BP3, and RBM15B) m6A score was generated from the significant regulators to classify patients into high- and low-score groups

  • Our multicentre analysis found that the m6A score was a reliable prognostic tool for guiding chemotherapy and immunotherapy selections for patients with SCLC

Read more

Summary

Introduction

Small cell lung cancer (SCLC) is lethal and possesses limited therapeutic options. Platinum-based chemotherapy—with or without immune checkpoint inhibitors (anti-PDs)—is the current first-line therapy for SCLCs; its associated outcomes are heterogeneous. Small cell lung cancer (SCLC) is the most lethal highgrade neuroendocrine malignancy and features fast growth, early metastasis, and drug resistance. Conventional platinum-based chemotherapy remains the first-line treatment for patients with SCLC. There have been few improvements in our ability to combat chemotherapy resistance for patients with SCLC [3]. Given the favourable achievements of immune checkpoint blockade (ICB) therapy for various tumours, this type of immunotherapy may be useful for SCLC treatment [4, 5]. A significant proportion of patients with ICB therapy resistance cannot benefit from such novel treatment [6,7,8]. Accurate and timely screening for patients who are more likely to benefit from immunotherapy is important

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call