Abstract

Dysregulation of cholesterol homeostasis occurs in multiple types of tumors and promotes cancer progression. Investigating the specific processes that induce abnormal cholesterol metabolism could identify therapeutic targets to improve cancer treatment. In this investigation, we observed upregulation of 7-dehydrocholesterol reductase (DHCR7), a vital enzyme involved in the synthesis of cholesterol, within bladder cancer (BC) tissues in comparison to normal tissues, which was correlated with increased BC metastasis. Increased expression of DHCR7 in BC was attributed to decreased mRNA degradation mediated by YTHDF2. Loss or inhibition of DHCR7 reduced BC cell invasion in vitro and metastasis in vivo. Mechanistically, DHCR7 promoted BC metastasis by activating the cAMP/PKA/FAK pathway. Specifically, DHCR7 increased cAMP levels by elevating cholesterol content in lipid rafts, thereby facilitating the transduction of signaling pathways mediated by cAMP receptors. DHCR7 additionally enhanced the cAMP signaling pathway by reducing the concentration of 7-DHC and promoting the transcription of the G protein-coupled receptor GIPR. Overall, these findings demonstrate that DHCR7 plays an important role in BC invasion and metastasis by modulating cholesterol synthesis and cAMP signaling. Furthermore, inhibition of DHCR7 shows promise as a viable therapeutic strategy for suppressing BC invasion and metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.