Abstract
N6-methyladenosine (m6A) modification is closely related to cardiac fibrosis. As the most common and abundant form of mRNA modification in eukaryotes, m6A is deposited by methylases (“writers”), recognized and effected by RNA-binding proteins (“readers”), and removed by demethylases (“erasers”), achieving highly dynamic reversibility. m6A modification is involved in regulating the entire biological process of target RNA, including transcription, processing and splicing, export from the nucleus to the cytoplasm, and enhancement or reduction of stability and translation. Programmed cell death (PCD) comprises many forms and pathways, with apoptosis and autophagy being the most common. Other forms include pyroptosis, ferroptosis, necroptosis, mitochondrial permeability transition (MPT)-dependent necrosis, and parthanatos. In recent years, increasing evidence suggests that m6A modification can mediate PCD, affecting cardiac fibrosis. Since the correlation between some PCD types and m6A modification is not yet clear, this article mainly introduces the relationship between four common PCD types (apoptosis, autophagy, pyroptosis, and ferroptosis) and m6A modification, as well as their role and influence in cardiac fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.