Abstract

RNA carries a diverse array of chemical modifications that play important roles in the regulation of gene expression. N6 -methyladenosine (m6 A), installed onto mRNA by the METTL3/METTL14 methyltransferase complex, is the most prevalent mRNA modification. m6 A methylation regulates gene expression by influencing numerous aspects of mRNA metabolism, including pre-mRNA processing, nuclear export, decay, and translation. The importance of m6 A methylation as a mode of post-transcriptional gene expression regulation is evident in the crucial roles m6 A-mediated gene regulation plays in numerous physiological and pathophysiological processes. Here, we review current knowledge on the mechanisms by which m6 A exerts its functions and discuss recent advances that underscore the multifaceted role of m6 A in the regulation of gene expression. We highlight advances in our understanding of the regulation of m6 A deposition on mRNA and its context-dependent effects on mRNA decay and translation, the role of m6 A methylation of non-coding chromosomal-associated RNA species in regulating transcription, and the activities of the RNA demethylase FTO on diverse substrates. We also discuss emerging evidence for the therapeutic potential of targeting m6 A regulators in disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.