Abstract

AbstractSearching for layered MAX phase‐like materials with properties of both ceramics and metals is a topic in its infancy. Herein, through a combination of crystal structure, electronic structure, chemical bonding, and elastic property investigations, we report two MAX phase‐like layered materials Rh2YSi and Ir2YSi. Rh2YSi and Ir2YSi have bulk modulus B of 150 and 185 GPa, respectively, which are comparable to the typical MAX phases like Ti2AlC, Ti3AlC2, and Ti3SiC2, but much lower shear modulus G (82 and 97 GPa for Rh2YSi and Ir2YSi, respectively) than MAX phases. The high stiffness is due to the presence of rigid Si2–M–Si3–M (M = Ir, Rh) units, while the low shear deformation resistance is due to the presence of metallic bonds and the weak bonds that link the rigid Si2–M–Si3–M (M = Ir, Rh) units. Based on the low shear deformation resistance and low Pugh's ratio, Rh2YSi and Ir2YSi are predicted as damage‐tolerant silicides and promising water vapor‐resistant interphase materials for SiCf/SiC composites if yttria or yttrium silicates are formed to protect the SiC fibers in oxygen containing environments. The possible slip systems are {0001} <> and {} <0001> for both Rh2YSi and Ir2YSi.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call