Abstract

Ultrasound image super-resolution (SR) aims to transform low-resolution images into high-resolution ones, thereby restoring intricate details crucial for improved diagnostic accuracy. However, prevailing methods relying solely on image modality guidance and pixel-wise loss functions struggle to capture the distinct characteristics of medical images, such as unique texture patterns and specific colors harboring critical diagnostic information. To overcome these challenges, this paper introduces the Multi-Modal Regularized Coarse-to-fine Transformer (M2Trans) for Ultrasound Image SR. By integrating the text modality, we establish joint image-text guidance during training, leveraging the medical CLIP model to incorporate richer priors from text descriptions into the SR optimization process, enhancing detail, structure, and semantic recovery. Furthermore, we propose a novel coarse-to-fine transformer comprising multiple branches infused with self-attention and frequency transforms to efficiently capture signal dependencies across different scales. Extensive experimental results demonstrate significant improvements over state-of-the-art methods on benchmark datasets, including CCA-US, US-CASE, and our newly created dataset MMUS1K, with a minimum improvement of 0.17dB, 0.30dB, and 0.28dB in terms of PSNR. Our code and dataset will be available at: https://github.com/eezkni/M2Trans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.