Abstract

The reaction between M(2)Cl(2)(NMe(2))(4), where M = Mo or W, and Hhpp (8 equiv) in a solid-state melt reaction at 150 degrees C yields the compounds M(2)(hpp)(4)Cl(2) 1a (M = Mo) and 1b (M = W), respectively, by the elimination of HNMe(2) [hpp is the anion derived from deprotonation of 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine, Hhpp]. Purification of 1a and 1b is achieved by sublimation of the excess Hhpp and subsequent recrystallization from either CH(2)Cl(2) or CHCl(3) (or CDCl(3)). By single-crystal X-ray crystallography, the structures of 1a and 1b are shown to contain a central paddlewheel-like M(2)(hpp)(4) core with Mo-Mo = 2.1708(8) A (from CH(2)Cl(2)), 2.1574(5) A (from CDCl(3)), W-W = 2.2328(2) A (from CDCl(3)), and M-N = 2.09(1) (av) A. The Cl ligands are axially ligated (linear Cl-M-M-Cl) with abnormally long M-Cl bond distances that, in turn, depend on the presence or absence of hydrogen bonding to chloroform. The quadruply bonded compounds M(2)(hpp)(4), 2a (M = Mo), and 2b (M = W), can be prepared from the reactions between 1,2-M(2)R(2)(NMe(2))(4) compounds, where R = (i)()Bu or p-tolyl, and Hhpp (4 equiv) in benzene by ligand replacement and reductive elimination. The compounds 2a and 2b are readily oxidized, and in chloroform they react to form 1a and 1b, respectively. The electronic structure and bonding in the compounds 1a, 1b, 2a, and 2b have been investigated using gradient corrected density functional theory employing Gaussian 98. The bonding in the M-M quadruply bonded compounds, 2a and 2b, reveals M-M delta(2) HOMOs and extensive mixing of M-M pi and nitrogen ligand lone-pair orbitals in a manner qualitatively similar to that of the M(2)(formamidinates)(4). The calculations indicate that in the chloride compounds, 1a and 1b, the HOMO is strongly M-Cl sigma antibonding and weakly M-M sigma bonding in character. Formally there is a M-M triple bond of configuration pi(4)sigma(2), and the LUMO is the M-M delta orbital. An interesting mixing of M-M and M-Cl pi interactions occurs, and an enlightening analogy emerges between these d(4)-d(4) and d(3)-d(3) dinuclear compounds and the bonding in C(2), C(2)H(2), and C(2)Cl(2), which is interrogated herein by simple theoretical calculations together with the potential bonding in axially ligated compounds where strongly covalent M-X bonds are present. The latter were represented by the model compounds M(2)(hpp)(4)(H)(2). On the basis of calculations, we estimate the reactions M(2)(hpp)(4) + X(2) to give M(2)(hpp)(4)X(2) to be enthalpically favorable for X = Cl but not for X = H. These results are discussed in terms of the recent work of Cotton and Murillo and our attempts to prepare parallel-linked oligomers of the type [[bridge]-[M(2)]-](n)().

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call