Abstract

Principal component analysis (PCA) is one of the successful dimensionality reduction approaches for color face recognition. For various PCA methods, the experiments show that the contribution of eigenvectors is different and different weights of eigenvectors can cause different effects. Based on this, a modified and simplified color two-dimensional quaternion principal component analysis (M2D-QPCA) method is proposed along the framework of the color two-dimensional quaternion principal component analysis (2D-QPCA) method and the improved two-dimensional quaternion principal component analysis (2D-GQPCA) method. The shortcomings of 2D-QPCA are corrected and the CPU time of 2D-GQPCA is reduced. The experiments on two real face data sets show that the accuracy of M2D-QPCA is better than that of 2D-QPCA and other PCA-like methods and the CPU time of M2D-QPCA is less than that of 2D-GQPCA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.