Abstract

The way to improve Kohn-Sham density functional theory is to improve the exchange-correlation functionals, and functionals have been successively improved by adding new ingredients, especially local spin density gradients, nonlocal Hartree-Fock exchange, and local meta terms based on kinetic energy density. Here, we present a new kind of functional obtained by adding rung-3.5 terms to a functional including local gradients, local meta terms, and range-separated Hartree-Fock exchange. A rung-3.5 term has short-range nonlocality designed to account for nondynamic correlation; we add two kinds of rung-3.5 terms, one kind modeled on position-dependent Hartree-Fock exchange and another modeled on the spin density at a point interacting with the opposite-spin exchange hole at the same point. Optimization of the functional yields broad accuracy for both ground states and excited states with especially significant improvement for systems with strong correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.