Abstract

The present paper concerns the derivation of polarized partial frequency redistribution (PRD) matrices for scattering on a two-level atom in arbitrary magnetic fields. We generalize the classical theory of PRD that is applicable to a J = 0 → 1 → 0 scattering transition, to other types of atomic transitions with arbitrary quantum numbers. We take into account quantum interference between magnetic substates of a given upper J-state. The generalization proceeds in a phenomenological way, based on the direct analogy between the Kramers-Heisenberg scattering amplitude in quantum mechanics and the Jones scattering matrix in classical physics. The redistribution matrices derived from such a generalization of classical PRD theory are identical to those obtained from a summed perturbative quantum electrodynamic treatment of the atom-radiation interaction. Our semi-classical approach has the advantage that it is non-perturbative, more intuitive, and lends itself more easily to further generalization (like the inclusion of J-state interference in the PRD theory).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.