Abstract

BackgroundRSV bronchiolitis is the most common cause of hospitalization of infants in the US, and may lead to the development of long-term airway disease. Inactivated vaccines may lead to enhanced disease, while replicating vaccines have caused unacceptable degrees of illness, and may revert back to wild type. We developed an RSV vaccine lacking the gene for the M protein (Mnull RSV). The M protein is responsible for reassembly of the virus after it infects cells and expresses its proteins. Infant baboons vaccinated intranasally (IN) with Mnull RSV develop serum neutralizing antibody (NA) responses, but the virus does not replicate.Methods2-week-old baboons (n = 12) were primed IN with 107 vaccine units of Mnull RSV or a control preparation, and a similar booster dose was given 4 weeks later. Mnull RSV vaccination did not cause tachypnea, airway inflammation or other signs of illness when compared with sham-vaccinated controls. Two weeks after boosting, all infants were challenged intratracheally with human RSV A2. We continuously monitored respiratory rates and levels of overall activity. On various days following challenge, we obtained BAL fluids for leukocyte counts and degree of virus replication, and evaluated alveolar-arterial oxygen gradients (A-a O2).ResultsVaccinated animals (vs. unvaccinated controls) had lower respiratory rates (P = 0.0014), improved A-a O2 (P = 0.0063) and reduced viral replication (P = 0.0014). Activity scores were higher in vaccine recipients than in unvaccinated animals. Vaccine recipients also were primed for earlier serum and secretory neutralizing antibody responses, and greater airway lymphocyte responses. Airway lymphocyte numbers (but not antibody responses) were associated with lower respiratory rates and reduced viral replication (P < 0.01).ConclusionVaccination intranasally with Mnull RSV protected infant baboons against an RSV challenge without causing respiratory disease or enhanced illness, and is a promising candidate for use in human infants. Lymphocyte responses to vaccination may play an equal or greater role in protection against RSV infection than antibody responses.Disclosures All authors: No reported disclosures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.