Abstract

BackgroundThe increasing number of completely sequenced bacterial genomes allows comparing their architecture and genetic makeup. Such new information highlights the crucial role of lateral genetic exchanges in bacterial evolution and speciation.ResultsHere we analyzed the twelve sequenced genomes of Streptococcus pyogenes by a naïve approach that examines the preferential nucleotide usage along the chromosome, namely the usage of G versus C (GC-skew) and T versus A (TA-skew). The cumulative GC-skew plot presented an inverted V-shape composed of two symmetrical linear segments, where the minimum and maximum corresponded to the origin and terminus of DNA replication. In contrast, the cumulative TA-skew presented a V-shape, which segments were interrupted by several steep slopes regions (SSRs), indicative of a different nucleotide composition bias. Each S. pyogenes genome contained up to nine individual SSRs, encompassing all described strain-specific prophages. In addition, each genome contained a similar unique non-phage SSR, the core of which consisted of 31 highly homologous genes. This core includes the M-protein, other mga-related factors and other virulence genes, totaling ten intrinsic virulence genes. In addition to a high content in virulence-related genes and to a peculiar nucleotide bias, this SSR, which is 47 kb-long in a M1GAS strain, harbors direct repeats and a tRNA gene, suggesting a mobile element. Moreover, its complete absence in a M-protein negative group A Streptococcus natural isolate demonstrates that it could be spontaneously lost, but in vitro deletion experiments indicates that its excision occurred at very low rate. The stability of this SSR, combined to its presence in all sequenced S. pyogenes sequenced genome, suggests that it results from an ancient acquisition.ConclusionThus, this non-phagic SSR is compatible with a pathogenicity island, acquired before S. pyogenes speciation. Its potential excision might bear relevance for vaccine development, because vaccines targeting M-protein might select for M-protein-negative variants that still carry other virulence determinants.

Highlights

  • The increasing number of completely sequenced bacterial genomes allows comparing their architecture and genetic makeup

  • Phagic slopes regions (SSR) are represented by grey rectangles and numbered as they appear on the chromosome, while the conserved non-phagic SSR is outlined by a boxed orange rectangle

  • Using the cumulative TA skew – a naïve method measuring biases in nucleotide composition – for the first time in this purpose, we could point to all known prophages of the twelve S. pyogenes sequenced chromosomes

Read more

Summary

Introduction

The increasing number of completely sequenced bacterial genomes allows comparing their architecture and genetic makeup. Such new information highlights the crucial role of lateral genetic exchanges in bacterial evolution and speciation. Horizontal gene transfer is critical for bacterial genome evolution, and includes genes for virulence, antibiotic resistance and metabolic features [7,8,9]. Objective criteria have been established to detect them, especially pathogenicity island: presence of virulence-related genes, location on the chromosome, different G+C content, direct repeats on the flanks, association with a tRNA, presence of mobility genes (integrases, transposases, insertion sequences), ability to be mobilized, site-specific integration [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call