Abstract
Although no details of the proposed artificial satellites are yet available, the idea is by no means new, and it seems likely that any successful experiment of this kind must follow the plans already outlined by Professor S. F. Singer of Maryland University. At the Astronautical Conference at Zürich in 1953 he gave details of a small spherical satellite, weighing only 100 lb., which would revolve about the Earth in a period of 90 minutes at a height of 190 miles above the surface. In collaboration with Arthur C. Clarke and A. V. Cleaver of the British Interplanetary Society, Singer called this instrument MOUSE (Minimum Orbital Unmanned Satellite Earth) and proposed that it should be launched as a three-stage rocket with an initial all-up weight of about 35,000 lb., and a thrust of 65,000 lb., which is very little different from the performance of the V2 rocket. The first step would take the rocket vertically through the lower atmosphere and then turn over to begin the inclined part of its flight; the second stage would come into action when the first had burned out, and complete the climb to give the correct altitude and direction of motion. The third stage would merely give sufficient boost to attain the required speed, which is about 17,400 m.p.h. At the moment of cut-out (controlled from the ground) the nose tip would open and release the satellite. This would take the form of a sphere, about three feet in diameter, spinning so as to maintain a constant orientation, and packed with instruments. The spin axis, parallel to the Earth's surface and perpendicular to the direction of motion, would point to the Sun, so that one half of the sphere would be strongly heated by the Sun's rays, and the other hemisphere would be extremely cold. Power would be obtained from a new type of solar battery, and the readings of the instruments would be radioed continuously to Earth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.