Abstract
Let $W$ be a finite crystallographic reflection group, with root system $\Phi$. Associated to $W$ there is a positive integer, the generalized Catalan number, which counts the clusters in the associated cluster algebra, the noncrossing partitions for $W$, and several other interesting sets. Bijections have been found between the clusters and the noncrossing partitions by Reading and Athanasiadis et al. There is a further generalization of the generalized Catalan number, sometimes called the Fuss-Catalan number for $W$, which we will denote $C_m(W)$. Here $m$ is a positive integer, and $C_1(W)$ is the usual generalized Catalan number. $C_m(W)$ counts the $m$-noncrossing partitions for $W$ and the $m$-clusters for $\Phi$. In this abstract, we will give an explicit description of a bijection between these two sets. The proof depends on a representation-theoretic reinterpretation of the problem, in terms of exceptional sequences of representations of quivers. Soit $W$ un groupe de réflexions fini et cristallographique, avec système de racines $\Phi$. Associé à $W$, il y a un entier positif, le nombre de Catalan généralisé, qui compte les amas dans l'algèbre amassée associée, les partitions non-croisées de $W$, et plusieurs autres ensembles intéressantes. Des bijections entre les amas et les partitions non-croisées ont été données par Reading et Athanasiadis et al. On peut encore généraliser le nombre de Catalan généralisé, obtenant le nombre Fuss-Catalan de $W$, que nous noterons $C_m(W)$. Ici $m$ est un entier positif, et $C_1(W)$ est le nombre Catalan généralisé standard. $C_m(W)$ compte les partitions $m$-non-croisées de $W$ et les $m$-amas de $\Phi$. Dans ce résumé, nous donnerons une bijection explicite entre ces deux ensembles. La démonstration dépend d'une réinterprétation des objets du point de vue des suites exceptionnelles de représentations de carquois.
Highlights
Let W be a finite crystallographic reflection group, with root system Φ
The Fuss-Catalan number for W is given by the following formula: Cm(W ) =
As we shall explain in more detail below, the Fuss-Catalan numbers count the maximal faces in the m-cluster complex associated to W and the m-noncrossing partitions for W
Summary
Let W be a finite reflection group, with a set of simple reflections S of cardinality n. In the case that W is the symmetric group Sn+1, the Coxeter element is an n+1-cycle, h = n+1, and the exponents are the numbers from 1 to n. In this case, the generalized Catalan numbers are just the usual Catalan numbers. The Fuss-Catalan numbers arise in the study of the Shi arrangement and its generalizations (see [At]) At this point, even for m = 1, no type-free bijection is known from either clusters or noncrossing partitions to the regions of the Shi arrangement inside the dominant chamber (which are counted by the generalized Catalan number)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete Mathematics & Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.