Abstract

The problem of the extension of subinterface microcracks in an infinite metal/ceramic bimaterial solid is studied. For the microcrack growth, the values of the M-integral are calculated under the assumption of a self-similar growth. First, the role that the M-integral plays in a metal/ceramic bimaterial solid with growing subinterface cracks is analyzed. It is concluded that an inherent relation exists between the value of the M-integral and the decrease of the effective elastic moduli for a bimaterial solid with growing subinterface microcracks. Second, it is concluded that mutual amplification and shielding effects exist during the microcrack extension, while they are substantially dependent on the increment of the microcrack length as well as the geometry of the microcrack arrangement under given loads. This strong mutual shielding effect of interacting microcracks makes the microcrack extension become increasingly difficult, and may stop the growth of the microcracks even under constant loads. Also, it is concluded that for a certain microcrack growth, the value of the M-integral in metal/ceramic bimaterial solid is always larger than that in homogeneous brittle solid for the same crack configuration. This means that the same microcrack growth in the former case shows lower stability than that in the latter one, due to the existence of a ductile phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.