Abstract

The wavelet variance provides a scale-based decomposition of the process variance for a time series or a random field and has been used to analyze various multiscale processes. Examples of such processes include atmospheric pressure, deviations in time as kept by atomic clocks, soil properties in agricultural plots, snow fields in the polar regions and brightness temperature maps of South Pacific clouds. In practice, data collected in the form of a time series or a random field often suffer from contamination that is unrelated to the process of interest. This paper introduces a scale-based contamination model and describes robust estimation of the wavelet variance that can guard against such contamination. A new M-estimation procedure that works for both time series and random fields is proposed, and its large sample theory is deduced. As an example, the robust procedure is applied to cloud data obtained from a satellite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.