Abstract

Here, we report a high performance biosensor based on (i) a Cu2+-DNA/MoS2 hybrid structure and (ii) a field effect transistor, which we refer to as a bio-FET, presenting a high sensitivity of 1.7 × 103 A/A. This high sensitivity was achieved by using a DNA nanostructure with copper ions (Cu2+) that induced a positive polarity in the DNA (receptor). This strategy improved the detecting ability for doxorubicin-like molecules (target) that have a negative polarity. Very short distance between the biomolecules and the sensor surface was obtained without using a dielectric layer, contributing to the high sensitivity. We first investigated the effect of doxorubicin on DNA/MoS2 and Cu2+-DNA/MoS2 nanostructures using Raman spectroscopy and Kelvin force probe microscopy. Then, we analyzed the sensing mechanism and performance in DNA/MoS2- and Cu2+-DNA/MoS2-based bio-FETs by electrical measurements (ID-VG at various VD) for various concentrations of doxorubicin. Finally, successful operation of the Cu2+-DNA/MoS2 bio-FET was demonstrated for six cycles (each cycle consisted of four steps: 2 preparation steps, a sensing step, and an erasing step) with different doxorubicin concentrations. The bio-FET showed excellent reusability, which has not been achieved previously in 2D biosensors.

Highlights

  • Biosensors have been applied in various fields such as the food industry1, medical diagnostics and treatment2, national security applicaitons3, and environmental monitoring4

  • We study the influence of doxorubicin on DNA/MoS2 and Cu2+-DNA/MoS2 structures in detail with Raman spectroscopy, Kelvin probe force microscopy (KPFM), and electrical measurement (ID-VG)

  • The short distance between the biomolecules and the sensor surface, which could be achieved without using high-κdielectric layers in bio-field effect transistors (FETs), contributed to the high sensitivity

Read more

Summary

Conclusions

We demonstrated a Cu2+-DNA/MoS2 based bio-FET with an extremely high sensitivity of 1.7 × 103 A/A. We confirmed the successful operation of the Cu2+-DNA/MoS2 bio-FET for six cycles with different doxorubicin concentrations (each cycle consists of four steps; 1st and 2nd preparation, 3rd sensing, and 4th erasing steps). This excellent reusability has not been reported previously for 2D biosensors. Fabrication and electrical characterization of DNA/MoS2- and Cu2+-DNA/MoS2-based bio-FETs. For the fabrication of back-gated MoS2 transistors, source/drain electrode regions were patterned (channel length and width were 5 μm) on MoS2/SiO2/Si samples by optical lithography, followed by deposition of 10-nm-thick Ti and 50-nm-thick Au in an e-beam evaporator. All drain currents (IDS) were normalized by the channel width (W)

Author Contributions
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.