Abstract

In this paper, we consider a problem of minimizing an M-convex function under an L1-distance constraint (MML1); the constraint is given by an upper bound for L1-distance between a feasible solution and a given “center.” This is motivated by a nonlinear integer programming problem for reallocation of dock capacity in a bike-sharing system discussed by Freund et al. (2017). The main aim of this paper is to better understand the combinatorial structure of the dock reallocation problem through the connection with M-convexity and show its polynomial-time solvability using this connection. For this, we first show that the dock reallocation problem and its generalizations can be reformulated in the form of (MML1). We then present a pseudo-polynomial-time algorithm for (MML1) based on the steepest descent approach. We also propose two polynomial-time algorithms for (MML1) by replacing the L1-distance constraint with a simple linear constraint. Finally, we apply the results for (MML1) to the dock reallocation problem to obtain a pseudo-polynomial-time steepest descent algorithm and also polynomial-time algorithms for this problem. For this purpose, we develop a polynomial-time algorithm for a relaxation of the dock reallocation problem by using a proximity-scaling approach, which is of interest in its own right.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.