Abstract

Phase Change Memory (PCM) has drawn great attention as a main memory due to its attractive characteristics such as non-volatility, byte-addressability, and in-place update. However, since the capacity of PCM is not fully mature yet, hybrid memory architecture that consists of DRAM and PCM has been suggested as a main memory. In addition, page replacement algorithm based on hybrid memory architecture is actively being studied, because existing page replacement algorithms cannot be used on hybrid memory architecture in that they do not consider the two weaknesses of PCM: high write latency and low endurance. In this article, to mitigate the above hardware limitations of PCM, we revisit the page cache layer for the hybrid memory architecture and propose a novel page replacement algorithm, called M-CLOCK, to improve the performance of hybrid memory architecture and the lifespan of PCM. In particular, M-CLOCK aims to reduce the number of PCM writes that negatively affect the performance of hybrid memory architecture . Experimental results clearly show that M-CLOCK outperforms the state-of-the-art page replacement algorithms in terms of the number of PCM writes and effective memory access time by up to 98% and 9.4 times, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.