Abstract

Recent studies have uncovered that hyperuricemia (HUA) leads to cognitive deficits, which are accompanied by neuronal damage and neuroinflammation. Here, we aim to explore the role of methyltransferase-like 3 (METTL3) in HUA-mediated neuronal apoptosis and microglial inflammation. A HUA mouse model was constructed. The spatial memory ability of the mice was assessed by the Morris water maze experiment (MWM), and neuronal apoptosis was analyzed by the TdT-mediated dUTP nick end labeling (TUNEL) assay. Besides, enzyme-linked immunosorbent assay (ELISA) was utilized to measure the contents of inflammatory factors (IL-1β, IL-6, and TNF-α) and oxidative stress markers (MDA, SOD, and CAT) in the serum of mice. In vitro, the mouse hippocampal neuron (HT22) and microglia (BV2) were treated with uric acid (UA). Flow cytometry was applied to analyze HT22 and BV2 cell apoptosis, and ELISA was conducted to observe neuroinflammation and oxidative stress. In addition, the expression of MyD88, p-NF-κB, NF-κB, NLRP3, ASC and Caspase1 was determined by Western blot. METTL3 and miR-124-3p were down-regulated, while the MyD88-NF-κB pathway was activated in the HUA mouse model. UA treatment induced neuronal apoptosis in HT22 and stimulated microglial activation in BV2. Overexpressing METTL3 alleviated HT22 neuronal apoptosis and resisted the release of inflammatory cytokines and oxidative stress mediators in BV2 cells. METTL3 repressed MyD88-NF-κB and NLRP3-ASC-Caspase1 inflammasome. In addition, METTL3 overexpression enhanced miR-124-3p expression, while METTL3 knockdown aggravated HT22 cell apoptosis and BV2 cell overactivation. METTL3 improves neuronal apoptosis and microglial activation in the HUA model by choking the MyD88/NF-κB pathway and up-regulating miR-124-3p.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.