Abstract
It is known that silicon fullerenes cannot maintain perfect cage structures like carbon fullerenes. Previous density-functional theory calculations have shown that even with encapsulated species, nearly all endohedral silicon fullerenes exhibit highly puckered cage structures in comparison with their carbon counterparts. In this work, we present theoretical evidences that the tetrahedral fullerene cage Si(28) can be fully stabilized by encapsulating a tetrahedral metallic cluster (Al(4) or Ga(4)). To our knowledge, this is the first predicted endohedral silicon fullerene that can retain perfectly the same cage structure (without puckering) as the carbon fullerene counterpart (T(d)-C(28) fullerene). Density-functional theory calculations also suggest that the two endohedral metallosilicon fullerenes T(d)-M(4)@Si(28) (M=Al and Ga) can be chemically stable because both clusters have a large highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap ( approximately 0.9 eV), strong spherical aromaticity (nucleus-independent chemical shift value of -36 and -44), and large binding and embedding energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.