Abstract

The results of phage-host cross-reaction tests reported by Moebus & Nattkemper (1981) were re-examined using serially diluted bacteriophage suspensions to elicit the actual type of reaction between the bacteria and phage lysates tested. More than 1450 phage-host systems were studied at 25 °C incubation temperature. Among the nearly 300 phage strains used, 29 were identified as temperate ones. In about 65 % of the phage-host systems bacteriophage propagation was indicated by plaque formation. The remaining systems were characterized by the “inhibition” reaction of bacteria to phage lysates indicated by homogenously reduced bacterial growth within the test area without production of progeny phages. Since crude phage lysates had to be used, it remains obscure whether agents other than infective phage particles (defective ones or bacteriocins) caused this reaction. Among 269 systems of the inhibition type which were also tested at 5° and 15 °C, 54 were observed to propagate phages at one of or both the lower temperatures. Plaques produced at 15 °C with several phage-host systems were found to yield only few progeny phages which generally could not be propagated to produce high-titer phage stocks. With one system temperature-sensitive phage mutants were isolated. The probability of inhibition reactions occurring was found to be higher with phage-host systems isolated east of the Azores than with systems derived from the western Atlantic. With systems from the last mentioned area the proportion of inhibition versus lytic responses of bacteria to phages was observed to increase with the distance between the stations where both parts of the systems were derived. The latter findings are discussed in view of the assumption that bacterial and bacteriophage populations undergo genetic changes while being transported from west to east.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.