Abstract

Lysyl oxidase (LOX), a copper-dependent amine oxidase known to function both intracellularly and extracellularly, is implicated in promoting tumor progression and hypoxic metastasis in certain malignancies. Nonsmall cell lung cancer (NSCLC) is a highly aggressive cancer with poor prognosis worldwide. However, the role and molecular mechanism by which LOX involving in hypoxic NSCLC invasion and migration are poorly understood. This study explores the effect of LOX on invasion and migration of NSCLC cells under hypoxic conditions. Small interfering RNA (siRNA) targeting LOX was used to silence LOX expression of hypoxic NSCLC cells, SPCA1 and A549. Cellular invasive and migratory potentials were determined by matrigel invasion and migration assays. Expression of LOX, Src, Src activation (Tyr418 phosphorylation of Src), and Snail were evaluated by real-time PCR and western blot, respectively. The results showed that LOX mRNA and protein expression were upregulated under hypoxic conditions in NSCLC cells. Knockdown of LOX led to inhibition of hypoxia-induced invasion and migration. Phosphorylated Src (Tyr418) and Snail proteins were decreased along with LOX downregulation. Our data provide molecular evidences that LOX is mechanistically linked to increased invasion and migration of hypoxic NSCLC cells, and may serve as an antimetastasis target of human NSCLC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call