Abstract

Listeria monocytogenes is an intracellular, foodborne gastrointestinal pathogen that is primarily responsible for causing listeriosis or food poisoning in otherwise healthy individuals. Infections that arise during pregnancy or within immune compromised individuals are much more serious resulting in the risk of fetal termination or fetal fatality postpartum in the former and septicemia or meningitis with a 20% fatality rate in the latter. While the roles of internalin proteins and listeriolysin-O in the infection process are well characterized, the specific roles of lysine-modified phospholipids in the membrane of L. monocytogenes are not. Investigation into the lipid bilayer composition of L. monocytogenes indicated that the overall proportions of lipids, including lysylcardiolipin and lysylphosphatidylglycerol (LysPG), vary with growth temperature and growth phase. In addition, we demonstrate that LysPG formation is essential for L. monocytogenes survival in the presence of increased osmolytic stress but has no effect on bacterial adherence, invasion or survival in the presence of physiologically relevant concentrations of human neutrophil peptide (HNP-1). In the absence of LysPG synthesis, L. monocytogenes unexpectedly retained flagellum-mediated motility at 37 °C. Taken together, these findings show that LysPG formation in L. monocytogenes has broader functions in virulence and survival beyond its known role in the modification of membrane potential previously observed in other bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.