Abstract

An environmentally benign approach to impart stainless steel (SS) surfaces with antifouling and antibacterial functionalities was described. Surface-initiated atom transfer radical polymerization (ATRP) of poly(ethylene glycol) monomethacrylate) (PEGMA) from the SS surface-coupled catecholic L-3,4-dihydroxyphenylalanine (DOPA) with terminal alkyl halide initiator was first carried out, followed by the immobilization of lysozyme at the chain ends of poly(ethylene glycol) branches of the grafted PEGMA polymer brushes. The functionalized SS surfaces were shown to be effective in preventing bovine serum albumin (BSA) adsorption and in reducing bacterial adhesion and biofilm formation. The surfaces also exhibited good bactericidal effects against Escherichia coli and Staphylococcus aureus. The concomitant incorporation of antifouling hydrophilic brushes and antibacterial enzymes or peptides onto metal surfaces via catecholic anchors should be readily adaptable to other metal substrates, and is potentially useful for biomedical and biomaterial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.