Abstract

We investigate lysozyme-lysozyme and lysozyme-salt interactions in electrolyte solutions using a molecular-thermodynamic model. An equation of state based on the statistical mechanical perturbation theory is applied to describe the interactions. The perturbation term includes a new square-well potential of mean force, which implies the information about the lysozyme surface and salt type. The attractive energy of the potential of mean force is correlated with experimental cloud-point temperatures of lysozyme in various solution conditions. The same attractive energy is used to predict osmotic pressure of a given system with no additional parameters. The new potential shows a satisfactory improvement in understanding the interactions between lysozymes in aqueous salt solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.