Abstract
The combined effect of the salivary peroxidase system and lysozyme on the glucose uptake of Streptococcus mutans NCTC 10449 was investigated. The bacteria were grown to late-exponential phase, washed, re-suspended in buffer at pH6, and incubated with (1) 50 micrograms/mL lysozyme from human milk for 60 min; (2) 7-15 mumol/L hypothiocyanous acid/hypothiocyanite for 10 min; and (3) lysozyme for 60 min prior to addition of and incubation with hypothiocyanous acid/hypothiocyanite for 10 min. Glucose uptake was initiated by adding the bacterial suspensions to 10 mL of pre-warmed 50 mumol/L glucose containing 0.98 mumol/L D-(U-14C-)-glucose, and the mixture was incubated in a shaking water-bath at 37 degrees C. Samples were withdrawn at various time intervals, rapidly filtered through 0.45-microns membranes, washed with ice-chilled buffer, and the incorporated radioactivity determined. Lysozyme stimulated S. mutans glucose uptake slightly, but significantly inhibited S. rattus glucose metabolism. A 20-30% inhibition of radiolabeled glucose incorporation was observed with hypothiocyanous acid/hypothiocyanite alone. Incubation of the bacteria with lysozyme prior to addition of hypothiocyanous acid/hypothiocyanite containing peroxidase resulted in a total inhibition of the glucose uptake. In contrast, lysozyme in combination with hypothiocyanous acid/hypothiocyanite without peroxidase gave only a 30-50% inhibition. The addition of 5 mmol/L dithiothreitol after incubation with lysozyme and hypothiocyanous acid/hypothiocyanite eliminated the inhibition of the bacterial glucose uptake. The viability of S. mutans was not affected by treatment with any of the components used. Our results indicate that physiological concentrations of lysozyme and the salivary peroxidase system components have a synergistic effect which results in a significant inhibition of glucose metabolism by S. mutans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.