Abstract

The aim of the present work was to assess the merits of supercritical CO2 (SC-CO2) as a process for protein encapsulation into calcium carbonate microparticles. Lysozyme, chosen as a model protein, was entrapped during CaCO3 precipitation in two different media: water (normal route) and SC-CO2. The particles were characterized and compared in terms of size, zeta potential, morphology by SEM, crystal polymorph and lysozyme encapsulation. Fluorescent and confocal images suggested the encapsulation and core-shell distribution of lysozyme into CaCO3 obtained by the SC-CO2 process. A high encapsulation efficiency was reached by a supercritical CO2 process (50%) as confirmed by the increased zeta potential value, lysozyme quantification by HPLC and a specific bioassay (M. lysodeikticus). Conversely, lysozyme was scarcely entrapped by the normal route (2%). Thus, supercritical CO2 appears to be an effective process for protein encapsulation within nanostructured CaCO3 particles. Moreover, this process may be used for encapsulation of a wide range of macromolecules and bioactive substances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.