Abstract

Effective and reliable prediction of allosteric molecular interactions involved in protein-ligand systems are essential to understand pharmacological modulation and toxicology processes that are driven by multiple factors covering from the atomistic to cellular level. Even though the interactions taking place within a defined biophysical environment are usually intricate and complex, having a preliminary knowledge of the structural determinant and biochemical function of target enzyme in the physiological or unbound state represent a step forward in the characterization of the forces involved these processes under interaction conditions as induced by drugs. In the present work, we tackle the study of relevant binding interactions between two well-recognized betablocker drugs and the lysozyme biological target from an experimental-computational perspective. In this way, molecular docking, machine learning and perturbation analysis combined with UV–vis and fluorescence measurements will allow us to determine the allosteric regulation and functional dynamics of lysozyme by binding propranolol and acebutolol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.