Abstract

Development of safe and effective photosensitizers is important for enhancing the efficacy of photodynamic cancer therapy. Phenalenone is a type II photosensitizer with a high singlet oxygen quantum yield; however, its short UV absorption wavelength hinders its application in cancer imaging and in vivo photodynamic therapy. In this study, we report a new redshift phenalenone derivative, 6-amino-5-iodo-1H-phenalen-1-one (SDU Red [SR]), as a lysosome-targeting photosensitizer for triple-negative breast cancer therapy. SDU Red produced singlet oxygen (Type II reactive oxygen species [ROS]) and superoxide anion radicals (Type I ROS) upon light irradiation. It also exhibited good photostability and a remarkable phototherapeutic index (PI > 76) against triple-negative breast cancer MDA-MB-231 cancer cells. Additionally, we designed two amide derivatives, SRE-I and SRE-II, with decreased fluorescence and photosensitizing capabilities based on SDU Red as activatable photosensitizers for photodynamic cancer therapy. SRE-I and SRE-II could be further converted into the active photosensitizer SDU Red via carboxylesterase-catalyzed amide bond cleavage. Moreover, SDU Red and SRE-II induced DNA damage and cell apoptosis in the presence of light. Therefore, SRE-II can act as a promising theranostic agent for triple-negative breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call