Abstract

A conjugated polymer-based fluorescence sensor, namely, PTNPy, was constructed on the basis of a polythiophene scaffold coupled with dimethylpyridylamine (DPA) groups in side chains for the consecutive detection and quantification of Cu2+ and Hcy in a perfect aqueous medium. A dramatic fluorescence quenching of PTNPy by the addition of Cu2+ was observed in Tris–HCl buffer solution (2 mM, pH 7.4), demonstrating a quick (<1 min) and highly selective response to Cu2+ with a low limit of detection of 6.79 nM. Subsequently, the Cu2+-quenched fluorescence of PTNPy can be completely recovered by homocysteine (Hcy), showing excellent selectivity to Hcy over other competitive species such as cysteine and glutathione. Thanks to the low cytotoxicity and lysosomal targeting ability of PTNPy, it was further applied as an optical sensor for the sequential imaging of Cu2+ and Hcy in HeLa cells. More importantly, Hcy concentration was linearly related to the fluorescence intensity of PTNPy in living cells, demonstrating huge potential for real-time monitoring the fluctuation of Hcy levels in living cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.