Abstract
N-heterocyclic carbenes-modified half-sandwich iridium(III) complex [(η5-C5Me4C6H4C6H5)Ir(C^C)Cl]PF6 (C1) (where C^C is a N-heterocyclic carbene ligand) can effectively prevent the proliferation of human cervical cancer cells. Here, this study aims to investigate the in-deep anticancer effects of this complex on non-small cell lung cancer cells and explore the underlying molecular mechanism. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that iridium(III) complex had potent cytotoxicity studies towards non-small cell lung cancer cells (A549), human lung squamous cells (L78), human cervical cancer cells (Hela) and human bronchial epithelial cells (BEAS-2B). Colocalization and cellular uptake studies were analyzed by confocal microscopy. Notably, C1 targeted lysosomes and entered the cancer cells partially through an energy-dependent pathway, inducing the release of cathepsins and other proteins. These proteins regulated lysosomal-mitochondrial dysfunction, thus leading to the release of cytochrome c (cyt c), which amplified apoptotic signals by activating many downstream pathways such as caspase pathways to promote cell apoptosis. The results showed that the inhibitory mechanism of this organometallic iridium(III) complex may involve caspase-associated apoptosis initiated by the lysosomal-mitochondrial pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.