Abstract

In human vascular smooth muscle cells cyclic AMP elevation by forskolin increases synthesis of the LDL receptor by a mechanism which appears independent of sterol control. This increased receptor synthesis is further enhanced by chloroquine. Both forskolin and prostaglandin E 1 increase the number of cell surface LDL receptors indicating that prostaglandins could exert physiological control over LDL metabolism. This effect is enhanced synergistically by chloroquine. The stimulation by forskolin of LDL receptor synthesis and expression leads to increased metabolism of apo-B and increased hydrolysis of LDL-borne cholesteryl ester. These effects of cyclic AMP on the activity of the LDL pathway are enhanced more than additively by preincubation with the reversible lysosomal inhibitor NH 4Cl. Thus cyclic AMP causes upregulation of the LDL receptor pathway resulting in increased rates of LDL metabolism but this effect can be damped or masked in cell culture by a cyclic AMP-sensitive lysosomal event, probably the acute stimulation of lysosomal cholesterol ester hydrolase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call