Abstract

Lysosomes are acidic organelles containing more than fifty hydrolases that provide for the degradation of intracellular and endocytosed materials by autophagy and heterophagy, respectively. They digest a variety of macromolecules, as well as all organelles, and their integrity is crucial. As a result of the degradation of iron-containing macromolecules (e.g., ferritin and mitochondrial components) or endocytosed erythrocytes (by macrophages), lysosomes can accumulate large amounts of iron. This iron occurs often as Fe(II) due to the acidic and reducing lysosomal environment. Fe(II) is known to catalyze Fenton reactions, yielding extremely reactive hydroxyl radicals that may jeopardize lysosomal membrane integrity during oxidative stress. This results in the release of hydrolases and redox-active iron into the cytosol with ensuing damage or cell death. Lysosomes play key roles not only in apoptosis and necrosis but also in neurodegeneration, aging, and atherosclerosis. The damaging effect of intralysosomal iron can be hampered by endogenous or exogenous iron chelators that enter the lysosomal compartment by membrane permeation, endocytosis, or autophagy. Cellular sensitivity to oxidative stress is enhanced by lysosomal redox-active iron or by lysosomal-targeted copper chelators binding copper (from degradation of copper-containing macromolecules) in redox-active complexes. Probably due to higher copper levels, lysosomes of malignant cells may be specifically sensitized by such chelators. By increasing lysosomal redox-active iron or exposing cells to lysosomal-targeted copper chelators, it should be possible to enhance the sensitivity of cancer cells to radiation-induced oxidative stress or treatment with cytostatics that induce such stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call