Abstract
Acetaminophen (APAP) overdose is currently the most frequent cause of drug-induced liver failure in the United States. Recently, it was shown that lysosomal iron translocates to mitochondria where it contributes to the collapse of the mitochondrial membrane potential. Therefore, the purpose of this study was to investigate whether cathepsin B, a lysosomal protease, is involved in APAP-induced hepatotoxicity. Cathepsin B activity was measured in subcellular liver fractions of C57Bl/6 mice 3 hr after 300 mg/kg APAP treatment. There was a significant increase in cytoplasmic cathepsin activity, concurrent with a decrease in microsomal activity, indicative of lysosomal cathepsin B release. To investigate the effect of cathepsin B on hepatotoxicity, the cathepsin inhibitor AC-LVK-CHO was given 1 hr prior to 300 mg/kg APAP treatment along with vehicle control. There was no difference between groups in serum alanine aminotransferase (ALT) values, or by histological evaluation of necrosis, although cathepsin B activity was inhibited by 70-80% compared with controls. These findings were confirmed with a different inhibitor (z-FA-fmk) in vivo and in vitro. Hepatocytes were exposed to 5 mM acetaminophen. Lysotracker staining confirmed lysosomal instability and cathepsin B release, but there was no reduction in cell death after treatment with cathepsin B inhibitors. Finally, cathepsin B release was measured in clinical samples from patients with APAP-induced liver injury. Low levels of cathepsin B were released into plasma from overdose patients. APAP overdose causes lysosomal instability and release of cathepsin B into the cytosol but does not contribute to liver injury under these conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Basic & Clinical Pharmacology & Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.