Abstract

Imidacloprid (IMI), a neonicotinoid pesticide, has been widely used due to its high efficiency against insect pests. However, its prolonged exposure may pose significant risks to non-target organisms, including mammals. Recent studies have raised concerns about its potential neurotoxicity, yet the underlying mechanisms remain poorly understood. This study aimed to assess the neurotoxic effects of chronic Imidacloprid exposure in Wistar rats, focusing on oxidative stress, mitochondrial dysfunction, and lysosomal disruption. Wistar rats were orally administered two doses of Imidacloprid (5mg/kg and 50mg/kg body weight) for three months. Neurotoxic effects were assessed by measuring key biochemical markers such as the enzymatic activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and glutathione S-transferase (GST). Non-enzymatic markers, including glutathione (GSH) levels and malondialdehyde (MDA) index, were also evaluated. Mitochondrial function was assessed by analyzing oxygen consumption, swelling, and membrane permeability and histopathological changes. Lysosomal stability was examined using the Neutral Red Retention Time (NRRT) assay. Neutral red is a dye that accumulates in the acidic environment of lysosomes. Healthy lysosomes retain the dye, while compromised lysosomes lose it, indicating destabilization. By measuring the amount of neutral red retained in lysosomes, the NRRT assay assesses lysosomal integrity. Lysosomal pH variations were also monitored to evaluate functional changes. Microscopic analysis provided insight into structural changes in lysosomes and other cell components. Lysosomal destabilization was further confirmed by morphological alterations observed through light microscopy, revealing a progressive, time-dependent degeneration of lysosomal structures, including lysosomal expansion, neutral red dye leakage, and cell rounding. These changes reflected a temporal evolution of lysosomal damage, progressing from minor structural disruptions to more severe alterations as exposure continued, observable at the microscopic level. During the study, clinical observations of intoxicated rats included symptoms such as lethargy, reduced activity levels, and impaired motor coordination. High-dose Imidacloprid exposure led to noticeable behavioral changes, including decreased exploratory behavior and altered grooming patterns. Additionally, signs of neurotoxic effects, such as tremors or ataxia, were observed in the rats exposed to the higher dose, reflecting the systemic impact of chronic pesticide exposure. The results revealed a significant decrease in the enzymatic activities of CAT, GPx, and SOD, accompanied by an increase in GST activity. A notable reduction in glutathione levels and a rise in MDA index were observed, indicating enhanced oxidative stress in the brain. Mitochondrial impairment was evidenced by disturbances in oxygen consumption, increased swelling, and altered membrane permeability. Lysosomal destabilization was confirmed by reduced retention of neutral red dye, structural changes in lysosomes, and a significant rise in lysosomal pH in the IMI-exposed groups. In addition, the histopathological features indicate that imidacloprid at the given dose and exposure duration may have caused notable neurotoxic effects in Wistar rat brain tissue. Chronic exposure to Imidacloprid induces oxidative stress, mitochondrial dysfunction, lysosomal disruption and histopathological alterations in the central nervous system of Wistar rats. These findings provide valuable insights into the neurotoxic mechanisms of neonicotinoid pesticides, highlighting the need for further research to understand the long-term effects of Imidacloprid exposure on mammalian health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.