Abstract
Neuronal ceroid lipofuscinoses (NCLs) are the most common hereditary neurodegenerative diseases of childhood. The infantile form, INCL, is caused by lysosomal palmitoyl-protein thioesterase (PPT) deficiency, which impairs the cleavage of thioester linkages in palmitoylated proteins, preventing their hydrolysis by lysosomal proteinases. Consequent accumulation of these lipid-modified proteins (constituents of ceroid) in lysosomes leads to INCL. Because thioester linkages are susceptible to nucleophilic attack, drugs with this property may have therapeutic potential for INCL. We report here that two such drugs, phosphocysteamine and N-acetylcysteine, disrupt thioester linkages in a model thioester compound, [14C]palmitoyl approximately CoA. Most importantly, in lymphoblasts derived from INCL patients, phosphocysteamine, a known lysosomotrophic drug, mediates the depletion of lysosomal ceroids, prevents their re-accumulation and inhibits apoptosis. Our results define a novel pharmacological approach to lysosomal ceroid depletion and raise the possibility that nucleophilic drugs such as phosphocysteamine hold therapeutic potential for INCL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.