Abstract

Lysophosphatidylserine (LPS) was found to stimulate intracellular calcium increase in U87 human glioma cells. LPS also stimulated chemotactic migration of U87 human glioma cells, which was completely inhibited by pertussis toxin (PTX). Moreover, LPS was also found to stimulate ERK, p38 MAPK, JNK, and Akt activities in U87 cells. We observed that LPS-induced U87 chemotaxis was mediated by PI3K, p38 MAPK, and JNK. LPS-induced chemotactic migration in U87 cells was inhibited by Ki16425, an LPA1/3 receptor-selective antagonist, which suggested that the Ki16425-sensitive G-protein coupled receptor (GPCR) played a role in this process. Moreover, U87 cells were found to uniquely express LPA1 but not LPA2–5. In addition, LPS failed to stimulate the NF-κB-driven luciferase activity in exogenously LPA1-transfected HepG2 cells. Taken together, we propose that LPS stimulates GPCR, which is in contrast to the well-known LPA receptors, thus resulting in the chemotactic migration in U87 human glioma cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.