Abstract

To clarify the molecular mechanism underlying the lysophosphatidylcholine (LPC) signaling, we studied the effect of LPC on the intracellular free calcium concentration ([Ca2+]i) in murine peritoneal macrophages. LPC when added alone induced biphasic elevation of [Ca2+]i, which consisted of a rapid increase followed by sustained elevation. LPC, when added with equimolar cholesterol, induced only the rapid increase in [Ca2+]i, which was blocked by WEB-2086, a selective platelet-activating factor (PAF) receptor antagonist. These results suggest LPC exerts a specific Ca2+ signaling. The sustained elevation reflected the cell lysis. Furthermore, we confirmed its pathway in a more specific manner using cloned PAF receptors expressed in Chinese hamster ovary cells. LPC induced an elevation of [Ca2+]i in a concentration-dependent manner only when the PAF receptor had been expressed, and the elevation of [Ca2+]i was blocked by WEB-2086. Taken together, LPC transduces Ca2+ signaling via the PAF receptor. Activation of the PAF receptor by LPC may indicate its novel important role in the pathogenesis of atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.