Abstract

Endothelial cell (EC) migration, essential for reestablishing arterial integrity after vascular injury, is inhibited by oxidized LDL (oxLDL) and lysophosphatidylcholine (lysoPC) that are present in the arterial wall. We tested the hypothesis that a mechanism responsible for lysoPC-induced inhibition is increased intracellular free calcium concentration ([Ca(2+)](i)). LysoPC, at concentrations that inhibit in vitro EC migration to 35% of control, increased [Ca(2+)](i) levels 3-fold. These effects of lysoPC were concentration dependent and reversible. LysoPC induced Ca(2+) influx within 10 minutes, and [Ca(2+)](i) remained elevated for 2 hours. The calcium ionophore A23187 also increased [Ca(2+)](i) and inhibited EC migration. Chelators of intracellular Ca(2+) (BAPTA/AM and EGTA/AM) and nonvoltage-sensitive channel blockers (lanthanum chloride and gadolinium chloride) blunted the lysoPC-induced [Ca(2+)](i) rise and partially preserved EC migration. After lysoPC treatment, calpain, a calcium-dependent cysteine protease, was activated, and cytoskeletal changes occurred. Calpain inhibitors (calpastatin, MDL28170, and calpeptin) added before lysoPC prevented cytoskeletal protein cleavage and preserved EC migration at 60% of control levels. LysoPC increases [Ca(2+)](i). In turn, activating calpains that can alter the cytoskeleton are activated and EC migration is inhibited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.