Abstract

The putative role of lysophospholipids in activation and regulation of the volume-sensitive taurine efflux was investigated in HeLa cells using tracer technique. Lysophosphatidylcholine (LPC, 10 microm) with oleic acid increased taurine efflux during hypotonic and isotonic conditions. Substituting palmitic or stearic acid for oleic acid enhanced taurine release during isotonic conditions, whereas ethanolamine, serine or inositol containing lysophospholipids were ineffective. High concentrations of LPC (25 microm) induced Ca(2+) influx, loss of adenosine nucleotides, taurine and the Ca(2+)-sensitive probe Fura-2, and thus reflected a general breakdown of the membrane permeability barrier. Low concentrations of LPC (5-10 microm) solely induced taurine efflux. The LPC-induced taurine release was unaffected by anion channel blockers (DIDS, MK196) and the 5-lipoxygenase inhibitor ETH 615-139, which all blocked the volume sensitive taurine efflux. Furthermore, LPC-induced taurine release was reduced by antioxidants (NDGA, vitamin E) and the protein tyrosine kinase inhibitor genistein. The swelling-induced taurine efflux was in the absence of LPC unaffected by vitamin E, blocked by genistein, and increased by H(2)O(2) and the protein tyrosine phosphatase inhibitor vanadate. It is suggested that low concentrations of LPC permeabilizes the plasma membrane in a Ca(2+)-independent process that involves generation of reactive oxygen species and tyrosine phosphorylation, and that LPC is not a second messenger in activation of the volume sensitive taurine efflux in HeLa cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call