Abstract
Neutrophils are the first-line defense against microbes. Enhancing the microbicidal activity of neutrophils could complement direct antimicrobial therapy for controlling intractable microbial infections. Previously, we reported that lysophosphatidylcholine (LPC), an endogenous lipid, enhances neutrophil bactericidal activity (Yan et al. 2004. Nat. Med. 10: 161-167). In this study we show that LPC enhancement of neutrophil bactericidal activity is dependent on glycine, and is mediated by translocation of intracellularly located glycine receptor (GlyR) alpha2 to the plasma membrane, and subsequent increase in azurophil granule-phagosome fusion/elastase release. LPC induced GlyRalpha2-mediated [Cl(-)](i) increase, leading to transient receptor potential melastatin (TRPM)2-mediated Ca(2+) influx. Studies using human embryonic kidney 293 cells heterologously expressing TRPM2 and neutrophils showed that TRPM2 channel activity is sensitive to [Cl(-)](i). Finally, LPC induced p38 MAPK phosphorylation in an extracellular calcium/glycine dependent manner. SB203580, a p38 MAPK inhibitor, blocked LPC-induced enhancement in Lucifer yellow uptake, azurophil granule-phagosome fusion, and bactericidal activity. These results propose that enhancement of azurophil granule-phagosome fusion via GlyRalpha2/TRPM2/p38 MAPK signaling is a novel target for enhancement of neutrophil bactericidal activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.