Abstract
The present study was aimed to develop astaxanthin (AX)-loaded liposomes by the utilization of soybean phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) to improve the nutraceutical properties of AX. AX-loaded liposomes consisting of PC (PC/AX) and LPC (LPC/AX) were evaluated in terms of particle size distribution, morphology, release characteristics, pharmacokinetic behavior, and nephroprotective effects in a rat model of acute kidney injury. PC/AX and LPC/AX had uniform size distributions with a mean particle size of 254 and 148 nm, respectively. Under pH 6.8 conditions, both liposomes exhibited improved dissolution behavior of AX compared with crystalline AX (cAX). In particular, LPC/AX showed a sevenfold higher release of AX than PC/AX. After the oral administration of LPC/AX (33.2 mg AX kg-1 ) to rats, there was a significant increase in systemic exposure to AX, as evidenced by a 15-fold higher AUC0-24 h than PC/AX. However, the oral absorption of AX in the cAX group was negligible. Based on the results of histological analysis and measurement of plasma biomarkers, LPC/AX exhibited improved nephroprotective effects of AX in the rat model of kidney injury. From these observations, a strategic application of the LPC-based liposomal approach might be a promising option to improve the nutraceutical properties of AX. © 2022 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.